 
            RESEARCH ON RESOURCES SCHEDULING METHOD BASE ON SWARM INTELLIGENCE OPTIMAL ALGORITHM IN CLOUD COMPUTING ENVIRONMENT
 
            Hongwei Zhao
Shenyang University
Copyright © 2017 by Cayley Nielson Press, Inc.
ISBN: 978-0-9992443-0-2
Cayley Nielson Press Scholarly Monograph Series Book Code No.: 140-1-1
US$125.50
Preface
Contents
1 Research on Multiple Particle Swarm  Algorithm Based on Bacterial Swarming Behavior  8
  1.1 Introduction.......................................................................................................................... 8
  1.2 Particle Swarm  Optimization..................................................................................... 10
  1.3 MPSOBS Algorithm.......................................................................................................... 11
  1.3.1 The  Proposed Multiple Particle Swarm optimization algorithm based on Bacterial Swarming   12
  1.3.2 The MPSOBS  algorithm steps.................................................................................. 14
  1.4 Benchmark Test................................................................................................................ 15
  1.4.1 Test  Function and Parameters................................................................................ 15
  1.4.2 Simulation  results for benchmark functions.................................................... 16
  1.5 Conclusions......................................................................................................................... 20
  1.6 Acknowledgments........................................................................................................... 21
  2 Adaptive Resource Schedule Method in  Cloud Computing System Based on Improved Artificial Fish Swarm..... 22
  2.1 Introduction....................................................................................................................... 22
  2.2 Related works.................................................................................................................... 24
  2.3 Optimized AFS Algorithm............................................................................................. 27
  2.3.1 The  original AFS algorithm....................................................................................... 27
  2.3.2 The Food  Marks Artificial Fish Swarm (FMAFS) Algorithm...................... 28
  2.4 Benchmark Tests.............................................................................................................. 32
  2.4.1 Benchmark  functions................................................................................................. 32
  2.4.2 Parameter  settings....................................................................................................... 32
  2.4.3 Simulation  results for benchmark functions.................................................... 34
  2.4.4 Resource  Schedule Algorithm Based on FMAFS Model................................ 36
  2.5 Conclusion........................................................................................................................... 37
  2.6 Acknowledgments........................................................................................................... 38
  3 Optimization of Resource Schedule Based  on Improved Particle Swarm Algorithm in Cloud Computing Environment...... 39
  3.1 Introduction....................................................................................................................... 39
  3.2 2. Related works............................................................................................................... 41
  3.3 Resource Scheduling Base  Particle Swarm Optimization.............................. 43
  3.3.1 Particle  Swarm Optimization................................................................................. 43
  3.3.2 Improved  particle swarm optimization algorithm DPSO.......................... 44
  3.4. Benchmark Test............................................................................................................... 45
  3.4.1 Test  Function and Parameters................................................................................ 45
  3.4.2 Simulation  results for benchmark functions.................................................... 47
  3.5 Conclusions......................................................................................................................... 49
  3.6 Acknowledgments........................................................................................................... 50
  4 Study of Artificial Fish Swarm  algorithm Based on Coevolutionary for Hybrid Clustering       51
  4.1 Introduction....................................................................................................................... 51
  4.2 Materials Optimized AFS  Algorithm and Methods............................................. 54
  4.2.1 The  original AFS algorithm....................................................................................... 54
  4.2.2 The  cooperative artificial fish swarm (CAFS) algorithm............................ 56
  4.3 Benchmark Tests.............................................................................................................. 59
  4.3.1 Benchmark  functions................................................................................................. 59
  4.3.2 Parameter  settings....................................................................................................... 60
  4.3.3 Simulation  results for benchmark functions.................................................... 62
  4.4 A Hybrid Clustering  Algorithm Based on CAF Clustering Model.................. 63
  4.5 Data Clustering  Experimental Results..................................................................... 65
  4.5.1 Experiment  by Simulation data sets..................................................................... 66
  4.5.2 Experiment  by real data sets................................................................................... 68
  4.6 Conclusion........................................................................................................................... 69
  4.7 Acknowledgment............................................................................................................. 70
  5 A Dynamic Dispatching Method of  Resource based on Particle swarm optimization for Cloud Computing Environment..... 71
  5.1 Introduction....................................................................................................................... 71
  5.2 Related works.................................................................................................................... 73
  5.3 Scheduling system of Cloud  Computing................................................................. 74
  5.3.1 Particle  Swarm Optimization................................................................................. 74
  5.3.2 Layered  scheduling system architecture........................................................... 76
  5.3.3 Load  balancing principle........................................................................................... 78
  5.3.4 The  realization of resource distribution algorithm used Layered scheduling system    79
  5.4 Experiment and the  analysis of results................................................................... 81
  5.5 Conclusion........................................................................................................................... 83
  6 A PSO-Based Resource Scheduling  Strategy for Load Balancing in Cloud Computing   84
  6.1. Introduction...................................................................................................................... 84
  6.2 Related works.................................................................................................................... 86
  6.3 Scheduling system of Cloud  Computing................................................................. 87
  6.3.1 Particle  Swarm Optimization................................................................................. 87
  6.3.2 Layered  scheduling system architecture........................................................... 89
  6.3.3 Load  balancing principle........................................................................................... 90
  6.3.4 The  realization of resource distribution algorithm used Layered scheduling system    91
  6.4 Experiment and the  analysis of results................................................................... 91
  6.5 Conclusions......................................................................................................................... 92
  6.6 Acknowledgment............................................................................................................. 93
  7 A Novel Modified Differential Evolution  Algorithm for Clustering      94
  7.1 Introduction....................................................................................................................... 94
  7.2 Differential Evolution  Algorithm.............................................................................. 96
  7.3 Modified differential  evolution algorithm............................................................ 97
  7.4 Experimental results and  analysis............................................................................ 99
  7.4.1  Maintenance-free benchmark functions......................................................... 100
  7.4.2 Results  for the 20-D problems............................................................................. 101
  7.5 Conclusions...................................................................................................................... 103
  7.6 Acknowledgments........................................................................................................ 104
  8 Resource Schedule Algorithm Based on  Artificial Fish Swarm in Cloud Computing Environment...... 105
  8.1 Introduction..................................................................................................................... 105
  8.2 Related works................................................................................................................. 107
  8.3 Scheduling system of Cloud  Computing.............................................................. 108
  8.3.1  Description of the Basic Behaviors of AFSA................................................... 108
  8.3.2  Improvement of AFSA............................................................................................. 110
  8.3.3 Layered  scheduling system architecture......................................................... 111
  8.3.4 The  realization of resource distribution algorithm used Layered scheduling system    113
  8.4 Experiment and the  analysis of results................................................................ 114
  8.5 Conclusion........................................................................................................................ 116
  8.6 Acknowledgements...................................................................................................... 116
  9 Research on Multiple Particle Swarm  Algorithm Based on Analysis of Scientific Materials      117
  9.1 Introduction..................................................................................................................... 117
  9.2 Basic flow of PSO  algorithm..................................................................................... 118
  9.3 PSO algorithm related control  parameters........................................................ 119
  9.4 The Proposed Multiple  Particle Swarm optimization algorithm............. 122
  9.5 Summary........................................................................................................................... 123
  9.6 Acknowledgment.......................................................................................................... 123
  References............................................................................................ 124
Readership
This book should be useful for students, scientists, engineers and professionals working in the areas of optoelectronic packaging, photonic devices, semiconductor technology, materials science, polymer science, electrical and electronics engineering. This book could be used for one semester course on adhesives for photonics packaging designed for both undergraduate and graduate engineering students.
